
Using Notional Machines to reinforce student comprehension of Lists
in Introductory Programming

John William Lynch

lynchjohn98@gmail.com

Abstract

Lists are a powerful tool that can be the first obstacle for new
programmers. New programmers can have trouble compre-
hending the full extent of what lists do and the various ways to
create and use them. As a TA for introductory programming us-
ing python, students struggled using indices to call objects in a
List properly, correctly counting index values, and understand-
ing index out of bounds errors. This article will explore how
my notional machine was integrated into my lessons, the ob-
served benefits, and potential limitations. My notional machine
gives a physical and visual example of lists that can potentially
alleviate new programmers struggles with comprehending the
List class in Python.

1 Project Description

1.1 Theoretical Framework

As technology advances programming is becoming more
widely studied yet remains difficult to learn. To help students
learn programming, research has been done into exploring the
development of “mental models,” a user’s personal representa-
tion of the system they are working on and what occurs during
run-time (Cañas, Bajo, & Gonzalvo, 1994). The mental model
users develop, while not indicative of their ability, is a manifes-
tation of their learning environment. Canas et al. (1994) found
students learning with Trace facilities had mental representa-
tions based on the semantic aspects of the coding language,
whereas Non-Trace facility students had their mental model
based on the syntactic aspects of the coding language (Cañas
et al., 1994). The idea that mental models of students are mal-
leable and based on environments they learn in could poten-
tially generate diverse teaching methods, one such method be-
ing Notional machines. A Notional machine is an idealized ab-
straction of a program that is programming language dependent
and seeks to give a correct perspective on how the program runs
(Sorva, 2013). Studies show that novice programmers some-
times have a hard time comprehending what occurs during their
program execution (Du Boulay, O’Shea, & Monk, 1999), and
Notional machines can be a useful mechanism to reduce the
complexity and ease students into subject matter easily. The
simplification of programming via Notional machines could be
viewed as harmful as we are not telling the full truth of what
is occurring inside the machine, yet it is counterproductive to
force novices to the same standards veteran programmers have

(Du Boulay et al., 1999). Furthermore, the advancement of
technology has allowed for a myriad of devices to program
on and more diverse problems programmers must face (Sorva,
2013), so taking care to not overwhelm novice programmers is
crucial. There are various ways to help novice programmers
avoid becoming overwhelmed, ranging from programmer tools
built for beginners or even methods that use the programmer’s
own bodies to reinforce lessons (Sorva, 2013). Building on
these concepts from Canas et al., Sorva, and Boulay et al., I
created a Notional machine that draws from where students are
sitting in their class in an effort to enhance their mental model
of how lists work in Python.

2 Notional Machine Description
2.1 Explanation of Problems with Lists

When introducing Lists to students they have to learn a few
rules right away; there are differences between an object’s
value and an object’s index in a list, we start counting indices
at 0, we can dictate how fast we traverse through the list (ie:
one at a time, two at a time), different data types can be con-
tained within the same list, and you can iterate through the list
in various ways. In an upcoming study, Dr. Craig Miller and
Dr. Amber settle explore list traversal using by value and by
index methods, which could potentially present more struggles
as students may have a hard time differentiating between the
two (Miller & Settle, 2021).

Fig. 1. Simple iteration method using looping by value with
output.

The method shown in Figure 1 is what is sometimes re-
ferred to as looping by value, as the i in the for loop is the actual
string object of apple, orange, banana, kiwi (Miller & Settle,
2021). Besides the immediate issues that can arise here with
syntax creations (ie, misplacing the colon after the list, forget-
ting a bracket, forgetting a parentheses) there are usually not



too many problems. After this introduction we can then intro-
duce indices. From here a secondary form of iteration through
a list is introduced.

Fig. 2. Simple iteration method using looping by index with
output.

The method shown in Figure 2 is referred to as looping by
index, as the i in this scenario is not the actual object, rather
the index of the object (Miller & Settle, 2021). The range()
function takes in a specific number and begins at 0 and in-
crements by 1 until it reaches 1 less than the specified num-
ber. This is combined with the len() function, which returns
the given length of a specified object. Combining these means
that len(MyList) returns a 4 because MyList has four objects,
and range() iterates from 0 up until 1 less than 4, ending at 3.
This looks inherently more complicated yet is a tool that can
be helpful for more of the complex coding problems. If you
wanted to print out the items like the looping by value method,
you would need to call the list in the print statement at that
specific index, shown in Figure 3.

Fig. 3. Simple iteration method using looping by index with
object output.

2.2 Novice Programmer Exercises using Lists

A sample problem using the looping by index method shown
in Figure 2 and Figure 3 would be attempting to find if a string
occurs sequentially in a list without using any built-in methods
(ie: count(), set()). The reason for not using built in methods
is to show that one can iterate through more than one item in a
list during a for loop iteration by modifying the value of their
index. Take the list in Figure 4 for example.

Fig. 4. List of strings with sequential string pear occurring.

We see that pear occurs one after the other, and our state-
ment should return True if asked if two words occur sequen-
tially. How does one access the next object in the list to do this
comparison? There are multiple ways to approach this prob-
lem, but for arguments sake we will use the looping by index

approach. One can access other objects in a list by manipu-
lating their current index location via arithmetic. For instance,
adding 1 to your current index location will move you one to
the right in the list, with the inverse occurring if subtracting 1.
An example of this is shown in Figure 5

Fig. 5. Using arithmetic to edit index value to access objects.

We need to make our program state that if our current index
is a certain value that is equal to the next index’s value, we have
a match. Rewriting the code to add in an if statement will fix
this, yet an unexpected error occurs as Figure 6 displays.

Fig. 6. Code that accesses two indices but throws an IndexEr-
ror.

When running the program, we get our successful print
message but an unexpected side result. This IndexError was
a consistent theme throughout my lab assistant experience, and
students struggled with finding a solution. The solution is that
we reduce how far our range(len) function goes so that it does
not go out of bounds. This is done by modifying the code
from range(len(MyList)) into range(len(MyList)-1). As a vet-
eran programmer, my mental model of lists was cemented and
just stating that they needed to reduce the range by one because
they are adding one would not be sufficient.

2.3 Notional Machine Usage

During lab sessions students would be sitting in five rows of
six students. I would then single out a row and begin with the
student closest to my desk. This student would be the start of
the list and would be given the index of 0. Following this the
student would be tasked with saying their index number and
then would point to the student next to them and say, “plus
1”. This pointing is indicative of the idea we can add to our
index value to increase where we currently are in a list. This
next student would then say their index number and point down
to the other student. This would continue until the end of the
row where the last student would say their index number and
I would ask them to point to the student next in line and say
“plus 1”. Since they are the last student they would point to
the wall/edge of the class, and this would reflect how Python



goes out of bounds. Making Python use a for loop to access an
index that doesn’t exist is like the last student pointing at the
non-existent next student. At this point the student should say
their index number and how many students (objects) are in that
row (the list). The inverse would then occur where the last stu-
dent points back to the previous student and says “minus 1” un-
til it returned towards the beginning of the list again. This idea
illustrates the process of using [i], [i+1], and [i-1] within their
code. Stating the number of users in the row during each itera-
tion can help them understand that they would need to subtract
from the length of the list if they were adding to their indices
so they can avoid index out of bounds errors. Illustrations of
this process is given in Figure 7.

3 Potential Conceptual Advantages of Usage

No surveys or research was done with this Notional machine, it
was merely a strategy employed to help comprehend the index
out of bounds error. A potential advantage of this exercise is
that it could make students think about how list traversal oc-
curs when using the loop by index method. Another potential
advantage is displaying how indices increase, and the differ-
ences between the number of objects in a list against the index
locations of those objects. This Notional machine could be ex-
panded upon by having students say a color of their shirt or
shoes they are wearing to attribute the idea that they are an ob-
ject instead of the index. This would tie into the differences
between looping by value and looping by index. Aiding their
mental model to differentiate between a List’s object’s value
and object’s index would be beneficial. A small gain could be
the interactivity between students it poses. This can present an
opportunity to be a activity for icebreaking and getting students
away from purely coding during lab time.

4 Conceptual Disadvantages of Usage

Mental models are malleable and indicative of a students learn-
ing environment (Cañas et al., 1994), notional machines are
language dependent and do not always apply to every situa-
tion (Sorva, 2013). Because of this the notional machine could
place barriers or detract from a student’s mental model in fu-
ture coding practices. Learning Arrays in Java pose large dif-
ferences from Lists in Python. Arrays are type specific and
cannot combine different types of objects (ie: a string and int
in the same array), so having the students use a notional ma-
chine that implies the container can have mixed objects could
confuse them in future lessons. This notional machine is re-
liant on the looping by index method and does not contain an
abstract idea for how one might traverse a list using the looping
by value method. This method only contains a +1, -1 idea for
looping by index, and does not display the full power that index
manipulation can have on lists such as multiplication and using
negative index values to acquire certain objects (ie: MyList[-1]
will always return the last item in the list). Another drawback is
more broad, but just as important. Michael Berry and Michael
Kolling address the issue of a lack of a shared abstract model
that students can base their mental models on, and that ad-hoc

Fig. 7. Example illustration of the Notional machine process.



models are usually formed by instructors but can range in ef-
fectiveness (Berry & Kölling, 2014). My notional machine was
something I created based on my own mental model of Lists.
Having taken the same Python course two years prior, I under-
stood students confusion and frustration at times and wanted
a more in-depth movement oriented solution as opposed to a
worded explanation. While the intentions can be good, creat-
ing a model like this could cause more confusion and not be
effective for each student.

5 Conclusion

In their paper surveying over 500 students and teachers, Essi
Lahthinen, Kirsti Ala-Mutka, and Hannu-Matti Jarvinen found
that “the biggest problem of novice programmers does not
seem to be the understanding of basic concepts but rather learn-
ing to apply them.” (Lahtinen, Ala-Mutka, & Järvinen, 2005).
The students’ experiences with index out of bounds errors re-
flect this, as while students can grasp the movement of going
up and down their row with adding and subtracting, they still
had trouble creating for loops or knowing when to use a cer-
tain for loop iteration method. Practice is always a great ben-
efit for programmers but should not be the sole answer when
more research and advancements in the realm of mental mod-
els and notional machines can be taken. An aggregation of
various notional machines can be what helps push the trend
towards a more systematic and widely-accepted model and is
what inspired me to create this paper. I believe any effort put
into aiding students with interactive models and new machines
will be greatly beneficial but should be taken with caution. In
our pursuit to help students create proper mental models for
their immediate problems we should be wary not to create ones
that cripple their long-term understanding. Despite this, any ef-
fort to push the medium forward should be taken, and I would
like see other notional machines and how they are used brought
forth and discussed.

References

Berry, M., & Kölling, M. (2014, 06). The state of play: A
notional machine for learning programming. ITICSE
2014 - Proceedings of the 2014 Innovation and Technol-
ogy in Computer Science Education Conference. doi:
10.1145/2591708.2591721

Cañas, J., Bajo, M., & Gonzalvo, P. (1994, 05). Men-
tal models and computer programming. International
Journal of Human-Computer Studies, 40, 795-811. doi:
10.1006/ijhc.1994.1038

Du Boulay, B., O’Shea, T., & Monk, J. (1999). The
black box inside the glass box: presenting comput-
ing concepts to novices. International Journal of
Human-Computer Studies, 51(2), 265 - 277. doi:
https://doi.org/10.1006/ijhc.1981.0309

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005, 09).
A study of the difficulties of novice programmers. In
(Vol. 37, p. 14-18). doi: 10.1145/1067445.1067453

Miller, C. S., & Settle, A. (2021). Mixing and matching loop
strategies: By value or by index? New York, NY, USA:
Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3408877.3432368
doi: 10.1145/3408877.3432368

Sorva, J. (2013, 06). Notional machines and in-
troductory programming education. ACM Transac-
tions on Computing Education, 13, 8:1-8:31. doi:
10.1145/2483710.2483713


